Existence of Nash Equilibria via Variational Inequalities in Riemannian Manifolds
نویسنده
چکیده
In this paper, we first prove a generalization of McClendon’s variational inequality for contractible multimaps. Next, using a new generalized variational inequality, we will prove an existence theorem of Nash equilibrium for the generalized game G = (Xi;Ti, fi)i∈I in a finite dimensional Riemannian manifold. A suitable example for Nash equilibrium is given in a geodesic convex generalized game. Mathematics Subject Classification: 91A10, 58B20, 47H10
منابع مشابه
Location of Nash Equilibria: a Riemannian Geometrical Approach
Existence and location of Nash equilibrium points are studied for a large class of a finite family of payoff functions whose domains are not necessarily convex in the usual sense. The geometric idea is to embed these non-convex domains into suitable Riemannian manifolds regaining certain geodesic convexity properties of them. By using recent non-smooth analysis on Riemannian manifolds and a var...
متن کاملVariational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm
We consider variational inequality problems for set-valued vector fields on general Riemannian manifolds. The existence results of the solution, convexity of the solution set, and the convergence property of the proximal point algorithm for the variational inequality problems for set-valued mappings on Riemannian manifolds are established. Applications to convex optimization problems on Riemann...
متن کاملExistence of solutions for variational inequalities on Riemannian manifolds
We establish the existence and uniqueness results for variational inequality problems on Riemannian manifolds and solve completely the open problem proposed in [21]. Also the relationships between the constrained optimization problem and the variational inequality problems as well as the projections on Riemannian manifolds are studied. Keyword: Variational inequalities; Riemannian manifold; Mon...
متن کاملNash-stampacchia Equilibrium Points on Manifolds
Motivated by Nash equilibrium problems on ’curved’ strategy sets, the concept of Nash-Stampacchia equilibrium points is introduced for a finite family of non-smooth functions defined on geodesic convex sets of certain Riemannian manifolds. Characterization, existence, and stability of NashStampacchia equilibria are studied when the strategy sets are compact/noncompact subsets of certain Hadamar...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کامل